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Abstract
It is well known that lamellar structure, hexagonal structure of cylinder domains,
gyroid and body-centred cubic structure of spherical domains all exist as
equilibrium structures in AB-type diblock copolymers. We shall show in
the present letter that, in addition to the above four phases, there is another
equilibrium phase, the so-called Fddd structure which is an interconnected but
uniaxial structure. We confirm this conclusion by two different methods. One
is the mode-expansion including a substantial number of modes. The other is
direct simulations of the time-evolution equation in three dimensions.

1. Introduction

Block copolymers exhibit various mesoscopic structures due to microphase separation at low
temperatures. It is well known that lamellae, hexagonally packed cylinders, body-centred
cubic (bcc) spheres and gyroid structures exist as equilibrium structures of AB-type diblock
copolymer melts [1, 2]. The relative stability of these equilibrium structures depends on the
block ratio, the interaction strength between monomers and temperature.

It has not been fully explored whether there are other equilibrium structures apart from the
four basic structures. In ABC-type linear triblock copolymers it has been found experimentally
that an Fddd structure appears in thermal equilibrium [3]. Tyler and Morse have investigated
this problem theoretically by means of a self-consistent field theory (SCFT) and have found
that an Fddd phase can appear in the phase diagram as the most stable equilibrium structure
both in ABC triblock copolymers and in AB diblock copolymers [4].

In our previous paper, we studied the morphological transitions of diblock copolymers by
using a mode expansion method [5]. The time evolution of the microphase-separated structures
was investigated by solving the amplitude equations of various fundamental modes. An Fddd
structure was obtained as a stable time-independent solution. However, the free energy of
the Fddd structure was not the lowest, so this was only a metastable state. In fact, the Fddd
structure appeared in the process of the structural transitions such as those between lamellar and
gyroid structures [5]. Quite recently, Takenaka et al have observed an Fddd structure during
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the lamellar–gyroid transition process [6] and in thermal equilibrium in AB diblock copolymer
melts [7]. The former is consistent with our prediction [5].

The purpose of the present paper is to investigate the Fddd structure in thermal equilibrium
and clarify the discrepancy between the results of [4] and [5]. We start with the following free
energy functional and the time-evolution equation [8–10]

F {φ} =
∫

d�r
[

1

2
(∇φ)2 − τ

2
φ2 + g

4
φ4

]

+ α

2

∫
d�r

∫
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) (
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(
φ − φ̄

)
, (2)

where φ(�r) represents the local concentration difference between A and B monomers. The
parameters in the free energy (1), τ , g, and α are positive in the microphase-separated state.
Throughout this paper, we shall put α = g = 1. The quantity φ̄ represents the spatial average
of φ. The function G(�r , �r ′) in the second term of (1) is defined through the following relation:

−∇2G
(�r , �r ′) = δ

(�r − �r ′) . (3)

In the present study, we shall employ two computational methods. One is the mode-
expansion method. In this method, the local concentration field φ is Fourier expanded in
terms of the fundamental reciprocal lattice vectors and their higher harmonics and it is valid in
the weak-segregation region. As described above, we found a metastable Fddd structure and
predicted that it appears as an intermediate state in the transitions between gyroid and lamellar
structures [5]. In the present paper, we carry out the above analysis in a more precise manner
to confirm whether the Fddd structure is metastable or stable.

Another method is to solve the time-evolution equation (2) directly in three dimensions.
The equilibrium solution φ for each structure is substituted into the free energy functional (1)
to examine the relative stability of the structures. This method is time consuming, but more
reliable compared with the mode expansion truncated up to finite number of modes. In the
numerical simulations under the periodic boundary condition, the system size is an important
parameter because each structure must be commensurate with the system size to avoid any
artefacts. That is, the steady solution of the time-evolution equation is forced to accommodate
the periodicity of the system, which is not necessarily a true equilibrium period (times integers).
Therefore it is necessary to examine the equilibrium free energy of lamellar, hexagonal, gyroid
and Fddd structures by changing the system size and searching for the region in the τ–φ̄ plane
where the free energy of the Fddd structure is lowest.

This letter is organized as follows. In section 2, we investigate the stability focusing on
the Fddd structure using the mode-expansion method. In section 3, we carry out numerical
simulations of the time-evolution equation (2) in three dimensions. From these two independent
methods, we conclude that the Fddd structure is one of the equilibrium structures. A summary
and discussion are given in section 4.

2. Mode expansion method

First, we employ the mode-expansion method and expand φ as follows:

φ (�r) = φ̄ +
[

12∑
l=1

al (t) ei�ql ·�r +
6∑

m=1

bm (t) ei �pm ·�r

+
12∑

n=1

cn (t) ei�kn ·�r +
3∑

j=1

d j (t) ei�s j ·�r + c.c.

]
. (4)
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Figure 1. Phase diagram in the τ–φ̄ plane within the two-mode expansion [5].

The reciprocal vectors �ql and �pm have been introduced in the previous two-mode expansion [5]
and are given by

�q1 = CQ (2,−1, 1) , �q2 = CQ (−2, 1, 1) , �q3 = CQ (−2,−1, 1) ,

�q4 = CQ (2, 1, 1) , �q5 = CQ (−1,−2, 1) , �q6 = CQ (1,−2, 1) ,

�q7 = CQ (−1, 2, 1) , �q8 = CQ (1, 2, 1) , �q9 = CQ (1,−1,−2) ,

�q10 = CQ (1, 1,−2) , �q11 = CQ (−1, 1,−2) , �q12 = CQ (−1,−1,−2) ,

�p1 = CQ (2, 2, 0) , �p2 = CQ (2,−2, 0) , �p3 = CQ (0, 2, 2) ,

�p4 = CQ (0,−2, 2) , �p5 = CQ (2, 0, 2) , �p6 = CQ (−2, 0, 2) ,

(5)

where the coefficients are chosen as

CQ ≡ Q√
6
. (6)

The unknown magnitude Q is to be determined by the minimization of the equilibrium free
energy.

The reciprocal lattice vectors listed above have been obtained from the level surface
representation of a gyroid structure [11]:

0 = 8 (1 − s)
[
sin 2x sin z cos y + sin 2y sin x cos z + sin 2z sin y cos x

]
− 4s

[
cos 2x cos 2y + cos 2y cos 2z + cos 2z cos 2x

] − u, (7)

where s and u are the parameters. It is noted that these 18 modes of �ql (l = 1, . . . , 12) and �pm

(m = 1, . . . , 6) are the minimal modes to represent lamellar, hexagonal, bcc, gyroid and Fddd
structures. The phase diagram obtained by using these 18 modes [5] is shown in figure 1.

In the present letter, we employ more accurate mode expansion by taking account of higher
modes �kn and �s j defined by

�k1 = CQ (1, 3, 0) , �k2 = CQ (−1, 3, 0) , �k3 = CQ (3, 1, 0) ,

�k4 = CQ (−3, 1, 0) , �k5 = CQ (0, 1, 3) , �k6 = CQ (0,−1, 3) ,

�k7 = CQ (0, 3, 1) , �k8 = CQ (0,−3, 1) , �k9 = CQ (3, 0, 1) ,

�k10 = CQ (3, 0,−1) , �k11 = CQ (1, 0, 3) , �k12 = CQ (1, 0,−3) ,

�s1 = CQ (4, 0, 0) , �s2 = CQ (0, 4, 0) , �s3 = CQ (0, 0, 4) .

(8)
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Figure 2. New phase diagram in the τ–φ̄ plane.

We have chosen these modes by the following consideration. First, we solve the time-evolution
equation (2) in three dimensions, tuning the system size carefully to obtain an Fddd solution
as a time-independent solution. Next, we carry out the Fourier transformation of this Fddd
solution to identify the Bragg peaks. In this way, the new modes �kn and �s j are obtained as the
next higher harmonics (see table 1).

It is noted that the 33 reciprocal vectors given by (5) and (8) are not necessarily independent
but satisfy some relations such as

�q1 + �q2 − �q3 − �q4 = 0, �q1 − �q3 − �p1 − �p2 = 0,

�q1 − �k2 − �k9 + �s2 = 0, �p1 − �k3 + �k6 + �k12 = 0,

�q1 + �q7 + �q12 = 0, �q1 + �p6 − �k6 = 0, �p5 + �p6 − �s3 = 0.

(9)

Substituting equation (4) into (2) and ignoring the higher harmonics, we can obtain a closed
set of the amplitude equations. Similarly, substituting equation (4) into (1), the free energy is
given in terms of the amplitudes al , bm , cn and d j and the wavenumber Q. However, we do not
write them down here because they are too lengthy.

Finally, we mention that the equilibrium period of microphase-separated structures should
be determined by the minimization of the free energy [5]

∂ F(al, bm, cn, d j , Q)

∂ Q
= 0. (10)

We have solved the set of the amplitude equations together with equation (10) and
obtained the equilibrium solutions corresponding to lamellar, hexagonal, bcc, gyroid, Fddd
and perforated lamellar structures. The last one will be discussed separately elsewhere. By
using these solutions, the equilibrium free energy F(al, bm, cn, d j , Q) for each structure is
evaluated. The phase diagram in figure 2 has been obtained in this way.

We emphasize that there is a small but finite area near the intersection point of lamellar,
hexagonal and gyroid phases where the Fddd structure is the mostly stable equilibrium
structure. The real space image of the Fddd structure is shown in figure 3(a), whereas the
Bragg points are shown in figure 3(b). This phase diagram is consistent with that obtained by
Tyler and Morse by SCFT [4].
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(a) (b)

Figure 3. (a) Fddd structure and (b) the Bragg points. The Bragg points on the same plane are
drawn by the same grey scale and the size of spheres indicates the relative strength of Bragg peaks.
The Bragg points for the modes with the amplitudes ai and b j are indicated by the spots connected
by the lines (a hexagon and two squares) whereas the new modes considered in the present study
are shown by the tiny isolated (8 + 2) spots.

Table 1. Representative values of the amplitudes of a gyroid and an Fddd structure for τ = 2.3
and φ̄ = 0.13.

Gyroid Fddd

Amplitudes Absolute value Amplitudes Absolute value

ai (i = 1, . . . , 12) 0.078 816 a5, a6, a10, a11 0.132 386
b j ( j = 1, . . . , 6) 0.033 577 a2, a4 0.068 444
dk (k = 1, 2, 3) 0.001 795 b3 0.039 548

c1, c2, c11, c12 0.008 913
d1 0.006 094

3. Direct simulations of the time-evolution equation

In this section we carry out direct numerical simulations of equation (2) in three dimensions to
confirm the results obtained by the mode expansion method in the preceding section.

It should be noted that the equilibrium period of the structures is unknown before solving
the equation. Therefore we have to repeat simulations by changing the system size to find the
optimal system size which gives us the lowest free energy for each structure. Because this is
time consuming, simulations are performed in a small system such that only one period of the
structure is contained. The cubic system is divided into 64 × 64 × 64 cells by varying the cell
size and the periodic boundary conditions are imposed.

We obtain the four equilibrium solutions of lamellar, hexagonal, gyroid and Fddd
structures as asymptotic time-independent solutions. Substituting these solutions into the
free energy functional (1), the equilibrium free energy of each structure can be calculated.
Figures 4(a)–(c) display the results, respectively, for τ = 2.15, τ = 2.19 and τ = 2.2 and for
φ̄ = 0.097. The horizontal axis and the vertical axis are the system size and the free energy per
unit volume, respectively. Note that the scale of the vertical axis is quite small. Nevertheless, it
is evident from these figures that the free energy per unit volume of the Fddd structure is lowest
for τ = 2.19 and φ̄ = 0.097, whereas the free energy of a hexagonal structure is lowest for
τ = 2.15 and that of a lamellar structure is lowest for τ = 2.2.

4. Summary and discussion

To summarize, we have investigated the stability of the Fddd structure in AB diblock
copolymers by means of two alternative methods. One is the mode expansion, taking account



L426 Letter to the Editor

–0.01260(a) (b)

(c)

–0.01266

–0.01272

F
re

e 
en

er
gy

 p
er

 u
ni

t v
ol

um
e

System size System size

System size

F
re

e 
en

er
gy

 p
er

 u
ni

t v
ol

um
e

F
re

e 
en

er
gy

 p
er

 u
ni

t v
ol

um
e

–0.01278

–0.01284

–0.014760

–0.014763

–0.014766

–0.014769

–0.014772
15.36 15.40 15.44 15.48 15.52 15.56 15.36 15.40 15.44 15.48 15.52

–0.01529

–0.01532

–0.01535

–0.01538

–0.01541
15.36 15.40 15.44 15.48 15.52 15.56

Gyroid

Gyroid

Gyroid

Fddd

Fddd

Fddd

Hexagonal

Lamellar

Lamellar

Lamellar

Hexagonal

Hexagonal

Figure 4. The free energy per unit volume of lamellar, hexagonal, gyroid and Fddd structures for
(a) τ = 2.15 (b) τ = 2.19 and (c) τ = 2.2 and for φ̄ = 0.097. The scale of the vertical axis of (b)
is smaller than those of (a) and (c) by the factor of one order of magnitude.

of some higher harmonics. We have found that the Fddd structure is most stable in some
parameters as shown in figure 2. This result agrees with that obtained by SCFT [4] although
the area for the Fddd structure is somewhat smaller compared to that obtained in [4].

The amplitudes for the Fddd structure are compared with those of the gyroid in table 1.
Note that the amplitudes for the Fddd structure decrease more slowly for higher harmonics than
those of the gyroid, where the magnitudes of d j in equation (4) are negligible. In our previous
paper, we did not consider the modes with the amplitudes ci and d j to evaluate the equilibrium
free energy of the Fddd structure so that it did not appear in the equilibrium phase diagram.

In order to confirm the results obtained by the mode-expansion method we have carried
out direct three-dimensional simulations of the time-evolution equation (2). The free energy
for each structure is evaluated by substituting the obtained data into equation (1). We have
found that there is a definite parameter regime where an Fddd structure is most stable. The
exact values of τ and φ̄ are not completely consistent with the phase diagram shown in figure 2
obtained by the mode expansion. This is due to the approximation of the mode expansion
truncated up to a finite number of modes and the fact that the convergence of the expansion is
especially slow for the Fddd structure, as shown in table 1.

Finally we make a remark about the present methods. The mode expansion as well as
the self-consistent theory [4] reply on the symmetry of the structures, and hence are unable to
predict any new structures which are not presupposed. However, the direct simulations of the
time-evolution equation with random noises are, in principle, free from this restriction. In fact,
the Fddd structure was obtained in [12] in three-dimensional simulations although we were
unable to identify it with the Fddd structure at that time.
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